预约成功
机器学习旨在使计算机能够从数据中学习并在不依赖于程序中命令的情况下进行改进。这种学习最终可以帮助计算机构建模型,例如用于预测天气的模型。这里,我们介绍了一些利用机器学习的常见应用程序:
1、常见的机器学习应用模型——财务应用
随着金融科技创业公司挑战现有企业,金融业正在迅速发展。这些现有企业中的许多人主要依靠传统的低效方法来提供标准化金融产品的咨询和业务。人工智能的进步正在通过引入自动化咨询改变了这一领域。机器学习模型也取代了传统的预测分析方法来衡量市场趋势。与传统的投资模型相比,这些模型可以提供更高水平的准确性和预测市场波动的速度。
现在,机器学习也帮助金融公司预防金融欺诈。这些模型特别擅长根据历史数据发现异常,并且可以轻松识别甚至预测欺诈活动。银行正在使用这些模型来提醒客户其帐户中的任何异常活动。除了防止欺诈之外,机器学习还可以在风险管理领域发挥更大的作用。这些模型可以提高信用评级的准确性,并改善贷款机构的风险管理。
2、常见的机器学习应用模型——医疗应用
机器学习和大数据可以利用大量潜在医疗数据,通过基于机器学习模型构建的新应用程序可以帮助识别疾病并提供正确的疾病诊断。机器学习还可以帮助人类进行基因测序、临床试验、药物发现和研发以及流行病爆发的预测。
例如,阿里云的ET Medical Brain,最近来自世界各地的算法科学家将在这个平台上利用他们的智慧进行精准医疗竞赛,他们将围绕为糖尿病的个性化治疗开发预测模型。
基于AI的系统还帮助医院改善其运营工作流程和数据管理。值得关注的是,医疗保健专业人员在阅读剂量说明或诊断数据时也会犯错误。具有图像识别和光学字符识别功能的智能AI系统可以对这些数据进行双重检查,并确保减少此类错误。
3、常见的机器学习应用模型——工业应用
机器学习算法支持涵盖整个制造生命周期的许多应用程序,包括产品设计、生产计划、生产优化、分配、现场服务和回收。现在,有几个行业正在实施基于人工智能和物联网的解决方案,并在其孤立和分散的SCADA(监控和数据采集)解决方案之上实现更高的协同效应。
此外,机器人和自动化机器的使用对于制造业来说并不陌生。基于物联网的先进系统现在推动了工厂设备和机器的预防性维护和维修,使用基于AI的技术优化供应链运营也正在不断发展。
4、常见的机器学习应用模型——AIOps平台
我们大多数人都目睹过IT运营的流程设置,其中IT从业者经常负担过重,每天处理数千个事件。这些分析系统无法利用IT运营数据的真正潜力,这就是为什么要转向开发有更高运营能力的智能系统。AIOps中的高级AI算法可以自动化分析和关联事件数据的过程,此外,AIOps可以使用可以实时重复删除,黑名单和关联事件馈送的算法来降低此类事件的频率。
以上就是有关于常见的机器学习应用模型的内容了,即使当前时代人工智能的发展依然有限,但是依然不影响大家对于人工智能这一行业的热情,小编相信在不久的未来,人工智能一定能为我们的社会带来更多便利,环球网校小编在此祝大家人工智能行业的学习之路顺利。